欢迎进入江西科泰新材料有限公司官网!English | 设为首页 | 加入收藏
您现在所在位置:江西科泰新材料有限公司官网 >> 产品介绍 >> 溅射靶材 >> 陶瓷靶材 >> 浏览文章

碳化硅靶材(SiC)

2SiC.png

碳化硅存在着约250种结晶形态。由于碳化硅拥有一系列相似晶体结构的同质多型体使得碳化硅具有同质多晶的特点。这些多形体的晶体结构可被视为将特定几种二维结构以不同顺序层状堆积后得到的,因此这些多形体具有相同的化学组成和相同的二维结构,但它们的三维结构不同。


α-碳化硅(α-SiC)是这些多型体中最为常见的,它是在大于1700°C的温度下形成的,具有类似纤锌矿的六方晶体结构。具有类似钻石的闪锌矿晶体结构的β-碳化硅(β-SiC)则是在低于1700°C的条件下形成的。β-碳化硅因其相较α-碳化硅拥有更高的比表面积,所以可用于非均相催化剂的负载体。


纯的碳化硅是无色的,工业用碳化硅由于含有铁等杂质而呈现棕色至黑色。晶体上彩虹般的光泽则是因为其表面产生的二氧化硅钝化层所致。


碳化硅高达2700°C的升华温度使得它适合作为制造轴承和高温熔炉的部件。它本身也具有较高的化学惰性。由于其相较于晶体硅具有更高的热电导率、电场击穿强度和最大电流密度,所以在高功率的半导体材料方面具有更好的应用前景。[27]此外碳化硅的热膨胀系数也非常低(4.0×10-6/K)同时也不会发生可能引起的不连续性热膨胀的相变。


电导率

在碳化硅中掺杂氮或磷可以形成n型半导体而掺杂铝、硼、镓或铍形成p型半导体。在碳化硅中大量掺杂硼、铝或氮可以使掺杂后的碳化硅具备数量级可与金属比拟的导电率。掺杂Al的3C-SiC、掺杂B的3C-SiC和6H-SiC的碳化硅都能在1.5K的温度下拥有超导性,但掺杂Al和B的碳化硅两者的磁场行为有明显区别。掺杂铝的碳化硅和掺杂B的晶体硅一样都是第二类超导体,但掺杂硼的碳化硅则是第一类超导体。


用途

磨料和切割工具

由于金刚砂的耐用性和低成本,在现代宝石加工中作为常用磨料使用。金刚砂凭借其硬度使它在制造业中诸如砂轮切割、搪磨、水刀切割和喷砂等磨削加工过程。将碳化硅粒子层压在纸上就能制成砂纸和滑板的握带。


1982年由氧化铝和碳化硅须晶构成的超强复合材料问世,经过随后三年的发展这种复合材料走出实验室成为商品。1985年先进复合材料公司和Greenleaf公司推出了新的商品化切割工具,工具就是由氧化铝和碳化硅须晶组成的加强型复合材料所制造的。


结构材料

在二十世纪80至90年代,几个欧洲、日本和美国的高温燃气涡轮机研究项目对碳化硅做了研究,项目的目标均打算以碳化硅代替镍高温合金制造涡轮机叶片或喷嘴叶片。但这些项目无一实现量产,主要原因在于碳化硅材料的耐冲击性和断裂韧度低。


不同于其他陶瓷材料比如氧化铝和碳化硼,碳化硅可用于制造复合装甲(比如乔巴姆装甲)和防弹背心中的陶瓷板。


天文学

碳化硅具备的低热膨胀系数、高的硬度、刚性和热导率使其能够作为天文望远镜的镜面材料。通过化学气相沉积制造的直径达3.5米和2.7米的多晶碳化硅圆盘已被分别安装在赫歇尔空间天文台和同温层红外线天文台等几个大型天文望远镜上。


催化剂载体

碳化硅本身的抗氧化性质和立方β-SiC所具有的大比表面积使其可作为非均相催化剂的载体。通过稻壳炭化合成的β-SiC已被用于作为非均相催化剂的载体应用于催化诸如正丁烷氧化生成顺丁烯二酸酐这类烃类的氧化反应。


石墨烯生长

通过加热至高温,可在碳化硅的表面得到外延石墨烯。这种获取石墨烯的方法被认为有希望实现大规模合成具有实际应用的石墨烯。


功率电子元件

碳化硅是目前正在研究的半导体,已在快速切换、高温及高电压的应用上,进行前期的大量生产。第一个可用的元件是肖特基二极管、之后是结型场效应管及高速切换的功率MOSFET。目前正在开发双极性晶体管及晶闸管。


碳化硅元件商品化的主要问题是如何去除缺陷:包括边缘位错、螺旋位错(空心和闭合)、三角形缺陷及基面位错[36]。因此,虽然有许多研究设法要改善特性,但最早期SiC材料的元件,其反向电压阻隔能力不好[37]。除了晶体品质外,SiC和二氧化硅的界面问题也影响了SiC MOSFET及IGBT的发展。渗氮已大幅改善了界面问题,不过其机制还不清楚。


2008年已有第一个商品化的JFET,额定1200V,之后是2011年第一个商品化的MOSFET,额定电压1200 V。SiC的开关以及SiC肖特基二极管(SBD)有常见的TO-247及TO-220封装外,许多厂商也开始将SiC裸晶放在功率模组中。


SiC SBD二极管已用在功因修正电路上,以及IGBT功率模组中。像是国际集成功率电子系统大会(CIPS)等研讨会也会定期报告有关SiC功率元件的技术驱势。


日本部分新造的大功率交传铁路车辆,以碳化硅取代IGBT用于牵引变流装置(如新干线ALFA-X、EMU3000和E235系),有助进一步减少车辆耗电。


SiC功率元件的主要挑战有:


闸极驱动电路:SiC功率元件的闸极驱动电路和硅半导体的电路不同,闸极驱动电路的电压是非对称的(例如+20 V和−5 V)。

包装:SiC 裸晶的功率密度比硅半导体要高,其温度可以超过硅的上限150 °C。需要用到新的芯片连接技术(例如烧结)才能有效地将热从元件带出,并且确保存在可靠的互联结构 (Sintering are required to efficiently get the heat out of the devices and ensure a reliable interconnection. ) 。